Graph algorithms are powerful tools, and there’s a lot of excitement about their applications for data science. It can sometimes be difficult, however - especially for those of us who aren’t data scientists - to know how they might be applied to a particular data set or a specific business problem. There are graph algorithms for centrality and importance measurement, community detection, similarity comparison, pathfinding, and link prediction. Which ones should you use on your data, and which ones might be most useful in answering your business questions?
In this presentation, we’ll look at a few examples of Neo4j graph algorithms, and see how they can be applied to data and business problems from the banking industry. We’ll discuss what kinds of data are appropriate for different types of algorithms, show how to model and structure data to work with graph algorithms, and run through some real-world scenarios demonstrating the use of graph algorithms on a sample Banking data set.
Duration
1 hour
Price
Free
Language
English
OPEN TO
Everyone
Dial-in Number
Please register for this Webinar to view the dial-in info.
Originally from the USA but now living in the UK, Joe Depeau has over 20 years of varied experience in the IT industry across a number of domains and specialties. Most recently, Joe has focused on technical pre-sales and solution architecture in...